Параметры : Fuel Correction / Коррекция топливоподачи, описание.

Наша жизнь протекает под воздействием и в зависимости от условий окружающей среды. Давление воздуха и концентрация кислорода, смена дня и ночи в применении к колебаниям суточной температуры, жара, дождь и географическое расположение как влияние на влажность воздуха . Окружающая атмосфера и основные законы природы влияют не только на все живое на земле, но и на работоспособность механических систем, в том числе и автомобилей. В большинстве случаев никто не способен влиять на проявления окружающей среды . Однако, существует возможность подкорректировать действия механизмов, адаптировав их к воздействию окружающей среды . Одна из таких простых возможностей — это коррекция подачи топлива в двигатель .

Параметры : Fuel Correction / Коррекция топливоподачи, причины неисправности.

— Засорение воздушных / топливных фильтров
— Утечки / подсосы воздуха
— Утечки / недостатки топлива
— Механические проблемы воздушно / топливных регуляторов
— Неисправности электропроводки / датчиков / электроклапанов
— Механические проблемы двигателя

Параметры : Fuel Correction / Коррекция топливоподачи, диагностика, тестирование.

— Внимание! При выполнении некоторых из этих тестов создается угроза пожара! Строго соблюдать правила пожарной безопасности!
— Тест состава газов и текущего значения λ
— Тест исправности датчиков кислорода
— Тест релевантности показаний датчиков системы управления
— Тест реакции системы на принудительное переобогащение распылением газа / бензина
— Тест утечек системы впуска воздуха распылением газа / бензина
— Тест утечек системы вентиляции картерных газов распылением газа / бензина
— Тест механики двигателя средствами мотор-тестера

Параметры : Fuel Correction / Коррекция топливоподачи, дополнительная информация.

ХХ — обороты, холостой ход .
ЧН — обороты, частичная нагрузка, примерно середина шкалы от ХХ до красной зоны тахометра / оборотов .

© internet / service manual / car & truck diagnostics people’s allowance

В интернете мне очень часто попадаются криво переведенные статьи о трактовке показаний различных датчиков, причем их репостят все подряд без разбора и тем самым еще больше путают народ. Поэтому я нашел и перевел правильную статью о топливной коррекции (Fuel Trim), постарался сделать это близко к тексту но не теряя при этом смысл, поэтому местами я дополнял перевод своим текстом. Итак, поехали.

На форумах часто задают вопросы по поводу топливной коррекции и у меня даже есть некоторое количество электронных писем с просьбами осветить этот вопрос. Многие отмечают топливную коррекцию PIDS (идентификаторы параметра) на показаниях в реальном времени (datastream) своих сканирующих устройств и интересуются для чего она.

Итак, что такое топливные коррекции и что они делают ? Надеюсь мы сможем прояснить все недопонимания. Правильное понимание топливных коррекций может привести к ускорению диагностики и предупредить вас о будущих проблемах с вашим автомобилем.

В основе своей топливные коррекции – процент изменения в топливоподаче во(по) времени. Для того, чтобы двигатель работал хорошо соотношение воздух/топливо должно оставаться в границах небольшого окна 14.7/1. Такое соотношение должно сохраняться в этой зоне под воздействием всех изменяющихся условий с которыми двигатель сталкивается каждый день: холодный пуск (хотя по мне на холодном пуске явно не 14.7/1, но это оставим на совести автора), холостой ход в условиях длительных движений в пробках при движении по трассе и т.д.

Итак, компьютер двигателя пытается сохранить правильное соотношение воздух/топливо посредством точной настройки количества топлива поступающего в двигатель. В то время, как добавляется или уменьшается подача топлива, кислородный датчик следит за тем сколько кислорода в выхлопе и сообщает об этом ЭБУ. Кислородные датчики могут быть представлены как глаза ЭБУ, которые следят за смесью кислорода в выхлопе. ЭБУ следит за этими входными данными от горячих кислородных датчиков безостоновочно в замкнутом цикле. Если кислородный датчик информирует ЭБУ, что выхлопная смесь бедная, ЭБУ добавляет топливо путем увеличения времени открытия форсунки, для компенсации. И наоборот, если датчик кислорода информирует ЭБУ о том, что выхлопная смесь богатая, ЭБУ уменьшает время открытия форсунок, уменьшая тем самым подачу топлива для уменьшения обогащения смеси.

Эти изменения – добавление или уменьшение подачи топлива – называются Топливной Коррекцией или Fuel Trim. На самом деле, хоть датчики и называются кислородными, показывают они состояние топливной смеси. Изменения в напряжении кислородного датчика вызывают прямые изменения топливной смеси. Кратковременная топливная коррекция (STFT) относится к мгновенным изменениям топливной смеси – несколько раз в секунду. Долгосрочная топливная коррекция (LTFT) показывает изменения топливной смеси за длительный промежуток времени на основе показаний кратковременной коррекции (среднее значение за длительное время). Отрицательная топливная коррекция (отрицательные значения по сканеру) свидетельствует об обеднении смеси, а положительная топливная коррекция об обогащении соответственно. (Т.е. если лямбда постоянно видит бедную смесь, то она постоянно обогащает и это отразится на LTFT плюсовыми значениями).

Представим себе такую ситуацию – вы едете от пляжа, который на уровне моря в горы. За короткие промежутки времени вы можете несколько раз подниматься и опускаться вверх-вниз по холмам. Однако на длительном промежутке времени вы на самом деле плавно поднимаетесь от самой низкой точки горы до ее вершины, т.е. едете постоянно вверх, несмотря на временные перепады. Так можно представить себе краткосрочную и долгосрочную коррекции. STFT – кратковременные подъемы и опускания, а LTFT – то, что происходит за длительный промежуток времени в итоге.

Нормальные значения кратковременной коррекции STFT вообще будут колебаться между небольшими положительными и отрицательными значениями 2-3 раза в секунду. Обычно они держатся в районе 5% в плюс и минус, но они могут иногда приближаться и к 8-9% в зависимости от КПД двигателя, возраста и степени износа компонентов и иных факторов. Нормальная долгосрочная коррекция должна сохраняться неизменной показывая состояние топливной смеси. Ее значения должны быть близки к 0% или в окресности 5-9%, однако они тоже могут колебаться но уже на более длительных промежутках времени, а могут и принимать статическое(постоянное) значение.


Нормальная кратковременная коррекция

Если вы видите при проверке двузначные значения STFT и LTFT, это свидетельствует о ненормальных уровнях обогащения или обеднения смеси. Это может быть по причине льющих форсунок, утечек или подсосе воздуха или иных подобных причинах. Например, если кислородный датчик считывает бедную смесь, можно говорить о «вакуумной утечке» (подсос воздуха имеется ввиду), ЭБУ будет компенсировать это путем добавления топлива.


Обедненная смесь. Идет ее обогащение системой машины.

Краткосрочная топливная коррекция STFT начнет немедленно увеличиваться, чтобы показать, что компьютер добавляет топливо. Когда компьютер добавляет топливо, это становится заметно кислородному датчику и он следит таким образом до тех пор, пока кислородный датчик не покажет, что смесь больше не бедна и правильное соотношение топливо/воздух достигнуто. ЭБУ будет поддерживать повышенное добавление топлива до тех пор, пока подсос воздуха не будет устранен. Диагностический прибор при этом будет показывать положительные двузначные значения STFT, что будет свидетельствовать о том, что ЭБУ добавляет слишком много топлива для нормальной работы двигателя. Через некоторое время LTFT будет также показывать это увеличение как долгосрочное (постоянное на долгом промежутке времени). А если подсос воздуха слишком большой, то компьютер не сможет добавить достаточно много топлива, чтобы сбалансировать смесь и достичь правильного соотношения воздух/топливо. Корректировка достигнет своего максимального значения, обычно это 25%. Затем выскочит код ошибки, говорящий о том, что двигатель работает на слишком обедненной смеси (ошибка P0171 или P0174) и максимальный порог возможной кратковременной коррекции STFT уже превышен. И обратная ситуация будет, если двигатель будет работать на сверхобогащенной смеси из-за утечки топлива (например льют форсунки), появятся ошибки P0172 или P0175.


Обогащенная смесь. Идет ее обеднение мозгами машины.

Имейте ввиду, что компьютер не имеет представления о том исправен ли кислородный датчик и дает ли он правильные значения! В некоторых случаях все бывает наоборот, если датчик неисправен! Например, если датчик O2 показывает чрезмерно богатую смесь по причине своей неисправности, компьютер полагаясь на показания датчика начинает ее обеднять. Это называет «ложно обогащенное состояние». Компьютер будет обеднять смесь опираясь на свои настройки и может выдать коды ошибок P0172, P0175. Эти коды будут указывать на переобогащенную смесь, однако она при этом будет на самом деле переобедненной.

Если вы будете ориентироваться на коды, возникающие в результате таких ложных состояний смеси и не сопоставите это все со всеми данными по кислородным датчикам (и от себя добавлю – обязательно смотрите на внешний вид налета на электродах свечей), то вы можете поставить неверный диагноз.

Также, на V-образных моторах на каждом выпускном тракте каждой из голов обычно стоит свой кислородный датчик и идет своя топливная коррекция для каждой головы (показания по Bank 1 и Bank 2). Если у вас 4х-цилиндровый двигатель, то у вас всего один банк данных – Банк 1. На V-образных моторах в этом смысле поудобнее по причине того, что если лямбда с одной стороны неисправна и врет вы можете сузить круг потенциальных причин проблемы ориентируясь на показания второго банка данных – Bank 2.

Всем удачи и правильных подходов к диагностике!

С уважением, перевод предоставлен коллективом мастерской Works-Garage.

Обновление 2018 года: внимание, часть этой информации уже утратила актуальность, часть имеет определенные ошибки!

О работе ЭБУ и самостоятельной первичной диагностике (часть 6 из 6) — в разработке.
Продолжим изучение того, что нам выдает наш ЭБУ.
Сегодня нас ждем самое интересное — топливные коррекции и датчики кислорода.

8) Long time fuel trim / Долгосрочная топливная коррекция (LTFT). Отображает один из коэффициентов, влияющих на состав смеси.
На исправной системе значение близко к 0%, нормальные отклонения в пределах +-5%.
Сохраняется в памяти автомобиля, основано и рассчитано на основе данных за некий последний период времени. Есть мнение, что ЭБУ повышает или понижает значение LTFT, когда STFT выходит за определенные рамки.
Условный пример:
Было LTFT=0%, STFT=-3%…18%. Эбу посчитал, что это не есть хорошо и сделал так:
LTFT=5%, STFT=-8%…13% (для наглядности взял такие цифры, но вообще разница между изменением LTFT и SFTF конечно будет отличаться, т.к. все мы знаем про сложные проценты).
Точной информации по какому алгоритму считается LTFT на наших ЭБУ нет.

9) Short time fuel trim / Краткосрочная топливная коррекция (STFT).
Отображает коррекцию топлива в сторону обогащения (+) или в сторону обеднения (-) в процентах. Нормальные показатели на ХХ (на прогретом двигателе) не должны превышать +-10%.
Также есть предположение, что LTFT+STFT даст нам значение конечного отклонения смеси, с учетом всех остальных коэффициентов.
В подтверждение этому можно понаблюдать график STFT на холодном двигателе и сравнить его с прогретым двигателем. На одинаковых оборотах среднее значение STFT (как и передельные значения в плюс и в минус) на холодном двигателе будет выше, чем на прогретом двигателе (т.к. на холодном ЭБУ включает принудительное обогащение смеси).
Так что, используя наш инструментарий, можно считать нормальным когда графики STFT и O2B1% практически полностью повторяют друг друга (небольшое различие может быть вызвано различным моментом опроса этих параметров, т.к. эти данные находятся в разных PID’ах и читаются по очереди).

10) Напряжение датчика кислорода 1.
В наших автомобилях применяются простые и дешевые циркониевые датчики кислорода (оригинал около 3000, полный аналог около 2800, не совсем аналог, но подходящий от ваза, с немного отличающимся сопротивлением нагревательного элемента – около 1000 руб.). Что это означает? Что датчики не умеют точно измерять количество кислорода. Они работают только категориями «много» и «мало».
У более новых автомобилей датчики бывают уже широкополосными и они могут показать «насколько много» или «насколько мало» кислорода в выхлопе.
У датчика кислорода есть так называемое «опорное напряжение». У нашего оно составляет примерно 0.44В (могу чутка ошибаться). Как только ДК начинает ритмично отклоняться вверх или вниз от этого напряжения, то ЭБУ переходит в Closed loop и считает, что смесь богатая или бедная относительно стехиометрической.
Если отклонение будет слишком маленьким (допустим +-0.01В: от 0.43 до 0.45), то ЭБУ может посчитать, что датчик умер, выдать ошибку и оставаться/перейти в Open loop.
В общем-то про датчики кислорода в интернете написано 100500 статей, кому интересно – почитайте.
Какие выводы можно сделать по показаниям ДК:
— если напряжение все время выше 0.44В – у вас происходит постоянное обогащение смеси (при этом ЭБУ может выдавать отрицательные коррекции – т.е. пытается снизить обогащение смеси, но у него не получается). Причин может быть много: от неисправного MAP (выдает ложные показания о количестве воздуха) до ссущих форсунок.
— если напряжение все время ниже 0.44В – у вас постоянно бедная смесь (догадались, да?). Причины: все тот же MAP, подсос воздуха, грязные форсунки (не пропускают топливо).
Но это скорей «идеальные» поломки.
В реальности еще можно встретить умирающий отравленный датчик, у которого время перехода от мин. к макс. значению увеличено. На графике синусойда работы будет растянута в горизонтальной плоскости.
На сайте alflash.com.ua вычитал метод проверки ДК1: на высоких оборотах (2000-2500) ДК1 должен совершить более 8 переключений (мало-много) за 10 секунд. Напоминаю: все проверки надо проводить на прогретом двигателе.

11) Процент коррекции по датчику кислорода 1.
Определяет то, насколько богатой или бедной получилась смесь (а может и какой надо сделать смесь в следующий раз). Если построить рядом графики напряжения ДК1 и % коррекции по нему – они должны быть визуально схожи.

12) Напряжение датчика кислорода 2.
Показания второго датчика кислорода (ДК2) сами по себе при «приготовлении» смеси не используются. Ни в прошивках Евро3, ни тем более в прошивках Евро2.
Есть лишь предположение, что при определенных показаниях ДК2, ЭБУ считает, что эффективность катализатора низкая и использует максимально «экологичные» таблицы, при расчете смеси. При этом вывешивая ошибку «Низкая эффективность катализатора». Но вот точной информации об этом нет – возможно просто вывешивает ошибку, а смесь считает как раньше.
Касательно того, что именно должен показывать ДК2. Изначально я встретил версию, что ДК2 должен повторять показания ДК1, при этом имея чуть меньшую амплитуду колебаний. Но это утверждение является ошибочным.
Во-первых, у нас простые и дешевые ДК, вы же помните? 🙂 Много/мало и не более того, ибо точность этого много/мало уже не очень хорошая.
Во-вторых, умные люди подсказали, что как раз таки полное повторение ДК2 графика ДК1 показывает «химическую» смерть катализатора.
Вот хорошая статья, в которой есть пример графиков ДК2 при мертвом и при живом катализаторе: alflash.com.ua/Learn/catnew/index.html
В этой же статье объясняется, что ЭБУ не сразу выкидывает ошибку, а только после прохождения «проверки», которая производится только при определенных условиях. В той статье указаны условия проверки для Toyota, нам это к сожалению никак не поможет.
Но я сумел найти документ, в котором описаны условия, при которых эту проверку проводят мозги Hyundai Elantra 🙂
И так: проверка проводится за два или 4 периода по 170 секунд в течение двух последовательных поездок. Проверка проводится при следующих условиях: обороты 1800-2300, кат нагрет, передачи не переключаются (в течение периодов проверки), ЭБУ работает в режиме Closed loop. Кстати ЭБУ не будет проводить проверку ката если у вас есть другие ошибки.
ЭБУ выдаст ошибку P0420 (низкая эффективность работы катализатора) если при проверках в течение двух поездок данные ДК1 и ДК2 совпадут более чем на 60%.
Так что если у вас ДК2 начинает повторять график ДК1 – задумайтесь, возможно ваш катализатор помирает смертью храбрых в неравной борьбе с бензином.

13) Процент коррекции по датчику кислорода 2.
Ха-ха, на наших машинах не применяется 🙂 Даже на стоковых Евро-3 прошивках, что еще раз доказывает, что ДК2 у нас только для галочки 🙂 А вот в Евро-4/5 по идее уже происходит коррекция топливной смеси и по ДК2.

14) Положение педали газа (ДПДЗ).
В состоянии покоя на наших ЭБУ должен показывать 0.0. Если у вас при отпущенной педали показывает хотя бы 0.1 – у вас проблемы с датчиком положения дроссельной заслонки, дроссельным узлом, тросом газа, педалью газа или ковриком под педалью 🙂
Такая беда ведет к увеличенному расходу бензина на ХХ и невозможности переключения в режим прекращения подачи топлива при сбросе газа.
Максимальное значение – около 80. По неподтвержденным данным ЭБУ считает максимальным открытие дросселя >60.
При нажатии на педаль газа, т.е. открывании дроссельной заслонки ЭБУ производит кратковременное, неадекватное показаниям датчика потока воздуха, увеличение времени или частоты открывания форсунок. Результат этого можно наблюдать в виде резкого скачка вверх или вниз на графиках напряжения ДК1, STFT, УОЗ и др. Далее подача бензина производится исходя из показаний MAP и мы видим рост, а затем стабилизацию на графике УОЗ.
Т.е. данный датчик по сути используется для перехода в режим ускорения, для перехода в режим «тапка в пол» (WOT – wide open throttle), перехода в режим отключения подачи топлива (на вазовских форумах его иногда называют принудительный холостой ход – ПХХ, хотя имхо, это не совсем корректно).

15) Уровень напряжения на адаптере.
Банальный уровень напряжения в сети. Любителям все время ездить с включенными фарами+туманками+обогревами и другими потребителями энергии, советую понаблюдать за просадками напряжения на ХХ (по сравнению с напряжением при оборотах >1500).

В следующей части:
— сопоставление различных показателей
— самостоятельно узнаем идентификатор прошивки ЭБУ
— что нельзя увидеть с помощью OBD-II ELM327 сканера