Температуру кипения необходимо знать, потому что при ее достижении вода превращается в пар, то есть переходит из одного агрегатного состояния в другое.

Мы привыкли к тому, что в кипящей воде можно дезинфицировать посуду, варить продукты, но это не всегда так. В некоторых условиях температура жидкости будет слишком низкой для всего этого.

Суть процесса

Прежде всего надо определиться с понятием кипения. Что это такое? Это процесс, при котором вещество превращается в пар. Причем процесс этот происходит не только на поверхности, но и по всему объему вещества.

При кипении начинают образовываться пузырьки, внутри которых находится воздух и насыщенный пар. Шум закипающего чайника, кастрюли указывает на то, что пузырьки воздуха начали всплывать, затем опускаться и лопаться. Когда емкость хорошо прогреется со всех сторон, шум прекратится, значит, жидкость полностью закипела.

Процесс проходит при определенной температуре и давлении и является с точки зрения физики фазовым переходом первого рода.

Обратите внимание! Испарение может происходить при любой температуре, кипение же – при строго определенной.

В таблицах температура кипения воды или другой жидкости при нормальном атмосферном давлении приводится как одна из основных физических характеристик. Температура кипения (Тк) на самом деле равняется температуре пара, который находится в насыщенном состоянии прямо на границе между водой и воздухом. Сама вода, если быть точным, нагрета чуть-чуть больше.

На процесс кипения также ощутимо влияют:

  • наличие в воде примесей газа;
  • звуковые волны;
  • ионизация.

Есть и другие факторы, заставляющие образовываться пузырьки быстрее или медленнее. Следует также отметить, что у каждых веществ своя Тк. Бытует мнение, что если добавить в воду соль, то она закипит быстрее. Это действительно так, но время изменится совсем немного. Для ощутимых результатов придется добавить очень много соли, что полностью испортит блюдо.

Различные условия

При нормальном атмосферном давлении (760 мм рт. ст., или 101 кПа, 1 атм.) вода начинает кипеть, нагревшись до 100 ℃. Это знают все.

Важно! Если внешнее давление увеличивать, то температура кипения тоже возрастет, а если уменьшать, то станет меньше.

Уравнение зависимости температуры кипения воды от давления довольно сложное. Зависимость эта не линейная. Иногда пользуются барометрической формулой для расчета, делая некоторые приближения, и уравнением Клапейрона-Клаузиуса.

Удобнее воспользоваться таблицами из справочников, в которых приведены данные, полученные экспериментальным путем. По ним можно построить график и, проведя экстраполяцию, вычислить требуемое значение.

В горах вода закипит, не успев нагреться до 100 ℃. На самой высокой вершине мира Джомолунгме (Эверест, высота над уровнем моря 8848 м) температура закипания воды равняется приблизительно 69 ℃. Но даже если опуститься немного ниже, то все равно вода будет кипеть не при ста градусах, пока мы не достигнем давления в 101 к Па. На Эльбрусе, который ниже Эвереста, чайник с водой закипит при 82 ℃ – там давление равно 0,5 атм.

Поэтому в горных условиях для приготовления пищи потребуется значительно больше времени, а некоторые продукты вообще не сварятся в воде, их придется готовить другим способом. Иногда неопытные туристы удивляются, почему яйца так долго варятся, а кипяток не обжигает. Все дело в том, что этот кипяток недостаточно нагрет.

В автоклавах и скороварках, наоборот, давление увеличивают. Это заставляет воду кипеть при более высокой температуре. Пища сильнее разогревается, и готовка происходит быстрее. Поэтому скороварки так и назвали. Нагрев до высокой температуры полезен еще и тем, что происходит дезинфекция жидкости, в ней погибают микробы.

Кипение при повышенном давлении

Повышение давления приведет к увеличению Тк воды. При 15 атмосферах кипение начнется только при 200 градусах, при 80 атм. – 300 градусов. В дальнейшем рост температуры будет очень медленным. Максимальное значение стремится к 374,15 ℃, что соответствует 218,4 атмосферам.

Кипение в вакууме

Что будет, если воздух начнет все более и более разряжаться, стремясь к вакууму? Понятно, что температура кипения тоже начнет уменьшаться. И когда же сможет закипеть вода?

Если понизить давление до 10–15 мм рт. ст. (в 50–70 раз), то температура кипения уменьшится до 10–15 ℃. Такой водой можно охладиться.

При дальнейшем снижении давления Тк будет уменьшаться и может достигнуть температуры замерзания. В этом случае в жидком состоянии вода просто не сможет существовать. Она будет переходить изо льда сразу в газ. Это случится примерно при 4,6 мм рт. ст.

Достичь абсолютного вакуума невозможно, но сильно разряженную атмосферу можно получить, если откачивать из сосуда с водой воздух. В результате такого эксперимента можно увидеть, когда именно закипает жидкость.

Давление понижается не только при откачке воздуха. Оно снижается возле быстро вращающегося винта, например, корабельного. В этом случае возле его поверхности тоже начинается кипение. Такой процесс назвали кавитацией. Во многих случаях такое явление нежелательно, но иногда оно приносит пользу. Так, кавитацию используют в биомедицине, промышленности и при очистке поверхностей ультразвуком.

Компания Comma провела некоторые исследования в области автохимии. Они показали пугающую неосведомлённость автовладельцев в том, что касается принципов работы тормозной жидкости: почти 75% из них не имеют об этом ни малейшего представления. Не очень высокий процент компетентности и в России. Помимо этого много свидетельств о низком качестве используемой тормозной жидкости.

По исследованиям специалистов, тормозные системы 25% автомобилей России в той или иной степени неисправны, и, как следствие, могут внезапно отказать. По статистике, 6% автовладельцев неосознанно рискуют своей жизнью в каждой поездке. И около 41% автомобилей действующего автопарка эксплуатируются с некондиционной тормозной жидкостью.

Мало кто знает, что тормозная жидкость впитывает влагу из атмосферы. В результате снижается её температура кипения, а значит, и степень эффективности. При температуре ниже 180 °C она становится не только бесполезной, но и опасной, и это может вызывать внезапные отказы тормозной системы.

Эксперты в области исследований качества эксплуатации автомобилей, компания Alba Diagnostics, рекомендуют заменять тормозную жидкость, если точка её кипения не выше 200 °C. Результаты тестирования автомобилей, проведённые компанией, показали, что в ряде случаев температура кипения залитой в исследуемые автомобили тормозной жидкости составила 150 °C.

Качество тормозной жидкости необязательно обусловливается возрастом и пробегом автомобиля. Температура кипения тормозной жидкости в каждом из пяти автомобилей с пробегом менее 100 000 км была ниже 200 градусов. Кроме того, подавляющее большинство клиентов автомастерских признали, что не осведомлены в принципах работы тормозной жидкости и не осознавали в полной мере риски, связанные с её эксплуатацией. Более четырёх пятых (65%) не заменяли тормозную жидкость более двух лет.

Таблица температуры кипения тормозной жидкости, залитой в автомобили России

Температура, °CСоотношение автомобилей, %
25019

Абсолютно все должны знать, что если тормозная жидкость загрязнилась, этот процесс необратим. Он сопряжён с высоким риском закипания тормозной жидкости вашего автомобиля. Это может произойти при трогании или остановке автомобиля, в условиях интенсивного торможения или при буксировке. Эту неисправность очень трудно диагностировать, так как после аварии тормозная жидкость охладится и будет казаться нормальной. Такой скрытый характер некондиционности тормозной жидкости является причиной тысяч аварий каждый год. Если визуальная проверка уровня тормозной жидкости и осуществляется в процессе стандартной процедуры техосмотра, то проверка состояния её качества, как правило, не производится. Качество тормозной жидкости можно определить только в результате проверки температуры её кипения.

Почему качество тормозной жидкости так важно?

В современных транспортных средствах работа тормозных систем обеспечивается тормозной жидкостью за счёт гидравлического давления, создаваемого при нажатии педали тормоза, что сопровождается значительным тепловыделением даже в нормальных условиях эксплуатации. Эффективность работы тормозной жидкости зависит от температуры её кипения, которая должна быть постоянно высокой. Вместе с тем, как любая жидкость, она гигроскопична, т. е. впитывает атмосферную влагу, которая и понижает точку её кипения. При 100 °C вода закипает и переходит в пар, который, в отличие от жидкости, сжимаем. При эксплуатации тормозной жидкости с низкой точкой кипения появляется эффект «мягкой педали», когда при нажатии на педаль тормоза эффект торможения ослаблен или полностью отсутствует. Когда пар остывает, он снова конденсируется в жидкое состояние. Тормозная система, казалось бы, восстанавливает работоспособность, но только до тех пор, пока из-за нагрева при торможении процесс не повторяется и снова не возникают те же симптомы. Такое состояние тормозной жидкости получило название «безмолвный убийца», так как может вызывать внезапный отказ тормозов.

Редакция благодарит специалистов компании Comma
за помощь при подготовке материала

Обычная вода закипает при 100 градусах — в справедливости этого утверждения мы не сомневаемся, а градусник легко это подтвер­ждает. Однако есть люди, которые могут скептически улыбнуть­ся, так как знают — вода не всегда и не везде кипит ровно при 100 градусах.

А разве такое возможно? Да, возможно, но только при определенных условиях.

Сразу нужно сказать, что вода может закипать при темпера­турах как ниже, так и выше +100 °С. Так что не стоит удивляться выражению «Вода вскипела при + 73 °С» или «Кипение воды на­чалось при +130 °С» — обе эти ситуации не просто возможны, но и относительно легко осуществимы.

Но, чтобы понять, как достичь только что описанных эффек­тов, необходимо разобраться в механизме кипения воды и любых других жидкостей.

При нагреве жидкости у дна и на стенках со­суда начинают образовываться пузырьки, наполненные паром и воздухом. Однако температура окружающей воды слишком мала, отчего пар в пузырьках конденсируется и сжимается, а под давлением воды эти пузырьки лопаются. Данный процесс происходит до тех пор, пока весь объем жидкости не прогреется до температуры кипения — в этот момент давление пара и воздуха внутри пузырей сравнивается с давлением воды. Такие пузырьки уже способны подняться к поверхности жидкости, выпустив там пар в атмосферу — это и есть кипение. Во время кипения темпера­тура жидкости больше не поднимается, так как наступает термо­динамическое равновесие: сколько тепла потрачено на нагрев, столько же тепла и отводится паром с поверхности жидкости.

Ключевой момент в закипании воды и любой другой жидко­сти — равенство давления пара в пузырях и давления воды в со­суде. Из этого правила можно сделать простой вывод — жидкость может закипать при совершенно разных температурах, а добить­ся этого можно изменением давления жидкости. Как известно, давление в жидкостях складывается из двух составляющих — ее собственного веса и давления воздуха над ней. Получается, что снизить или повысить температуру кипения воды можно изме­нением атмосферного давления либо давления внутри сосуда с подогреваемой жидкостью.

В действительности так и происходит. Например, в горах кипяток вовсе не так горяч, как на равнинах, — на высоте 3 км, где давление воздуха падает до 0,7 атмосферы, вода закипает уже при +89,5 градусов. А на Эвересте (высота — 8,8 км, давление — 0,3 атмосферы) вода закипает при температуре чуть больше +68 градусов. Да, приготовление пищи при таких температурах — дело весьма трудное, и если бы не специальные средства, то на таких высотах это было бы и вовсе невозможно.

Чтобы повысить температуру кипения, необходимо поднять давление атмосферы или хотя бы плотно закрыть сосуд с водой. Этот эффект используется в так называемых скороварках — плотно закрытая крышка не дает выходить пару, из-за чего давле­ние в ней повышается, а значит, растет и температура кипения. В частности, при давлении в 2 атмосферы вода закипает только при +120 градусах. А в паровых турбинах, где поддерживается давле­ние в десятки атмосфер, вода не закипает и при +300-400 °С!

Однако существует еще одна возможность нагрева воды до больших температур без кипения. Замечено, что образова­ние первых пузырьков начинается на шероховатостях сосуда, а также вокруг более или менее крупных частиц присутствую­щих в жидкости загрязнителей. Поэтому если нагревать абсо­лютно чистую жидкость в идеально отполированном сосуде, то при нормальном атмосферном давлении можно заставить эту жидкость не вскипать при очень высоких температурах. Образуется так называемая перегретая жидкость, отличающаяся крайней нестабильностью — достаточно минимального толчка или попадания пылинки, чтобы жидкость мгновенно вскипела (а на деле — буквально взорвалась) сразу во всем объеме.

Обычную воду при некоторых усилиях можно нагреть до +130 °С и она не вскипит. Для получения больших температур уже необходимо применение особого оборудования, но предел наступает при +300 °С — перегретая вода при такой темпера­туре может существовать доли секунды, после чего происходит взрывоподобное вскипание.

Интересно, что перегретую жидкость можно получить и иным способом — подогреть ее до относительно низких температур (чуть ниже +100 °С) и резко понизить давление в сосуде (на­пример, поршнем). В этом случае также образуется перегретая жидкость, способная вскипеть при минимальном воздействии. Данный метод используется в пузырьковых камерах, регистри­рующих заряженные элементарные частицы. При пролете сквозь перегретую жидкость частица вызывает ее локальное вскипа­ние, а внешне это отображается как возникновение трека (сле­да, тонкой черточки) из микроскопических пузырьков. Однако в пузырьковых камерах применяется отнюдь не вода, а различ­ные сжиженные газы.

Итак, вода далеко не всегда закипает при +100 °С — все зависит от давления внешней среды или внутри сосуда. Поэтому в горах без специальных средств нельзя получить «нормальный» кипяток, а в котлах тепловых электростанций вода не кипит даже при +300 °С.