Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

Схема регулируемого стабилизатора

Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и припаял его к плате с помощью проводков.

Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

Мощность, которую сможет рассеять такой стабилизатор напряжения не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

Печатная плата для дискретных элементов и переменного резистора типа СП5-2 (3296).

Стабильность неплоха и напряжение изменяется только на доли вольта на протяжении длительного времени. Готовая платка получилась компактна и удобна. Так как я планирую длительное время использовать это устройство для защиты дорожек окрасил всё дно платы зеленым цапонлаком. Автор материала — Егор.

Обсудить статью СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Простая схема для регулировки и стабилизации напряжения показана на рисунке. Такую схему можно выполнить даже неопытному в электронике любителю. На вход подается 50 вольт, при этом на выходе получается 15,7 В.

Главной деталью этого прибора стал полевой транзистор. В его качестве можно применять IRLZ 24 / 32 / 44 и аналогичные ему полупроводники. Чаще всего их изготавливают в корпусе ТО – 220 и D2 Pak. Его стоимость составляет менее одного доллара. Этот мощный полевик имеет 3 вывода. Он имеет внутреннее строение металл–изолятор–полупроводник.

Стабилизатор на микросхеме ТL 431 в корпусе ТО – 92 обеспечивает настраивание величины выходного напряжения. Мощный полевой транзистор мы оставили на охлаждающем радиаторе и проводами припаяли к монтажной плате.

Напряжение на входе для такой схемы 6-50 В. На выходе получаем от 3 до 27 В, с возможностью регулировки переменным сопротивлением на 33 кОм. Ток выхода большой, и составляет величину до 10 А, зависит от радиатора.

Выравнивающие конденсаторы С1, С2 емкостью от 10 до 22 мкФ, С2 – 4,7 мкФ. Без таких деталей схема будет функционировать, однако не с таким качеством, как необходимо. Нельзя забывать про допустимое напряжение электролитических конденсаторов, которые должны быть установлены на выходе и входе. Мы взяли емкости, которые выдерживают 50 В.

Такой стабилизатор способен рассеивать мощность не выше 50 Вт. Полевик необходимо монтировать на радиатор охлаждения. Его площадь целесообразно выполнять не меньше 200 см 2 . При установке полевика на радиатор нужно промазать место касания термопастой, для лучшего теплоотвода.

Можно применять переменный резистор на 33 кОм типа WH 06-1. Такие резисторы имеют возможность точной настройки сопротивления. Они бывают импортного и отечественного производства.

Для удобства монтажа на плату припаивают 2 колодки, вместо проводов. Так как провода быстро отрываются.

Вид платы дискретных компонентов и переменного сопротивления вида СП 5-2.

Стабильность напряжения в результате получается неплохой, а напряжение выхода колеблется на несколько долей вольта долгое время. Монтажная плата получается компактных размеров и удобна в работе. Дорожки платы окрашены зеленым цапонлаком.

Мощный стабилизатор на полевике

Рассмотрим сборку схемы стабилизатора, предназначенного для блока питания большой мощности. Здесь улучшены свойства прибора с помощью мощного электронного ключа в виде полевого транзистора.

При разработке мощных силовых стабилизаторов любители чаще всего применяют специальные серии микросхем 142, и ей подобные, которые усилены несколькими транзисторами, подключенными по параллельной схеме. Поэтому получается силовой стабилизатор.

Схема такой модели прибора изображена на рисунке. В нем использован мощный полевик IRLR 2905. Он служит для переключения, однако в этой схеме он применен в линейном режиме. Полупроводник имеет незначительное сопротивление и обеспечивает ток до 30 ампер при нагревании до 100 градусов. Он нуждается в напряжении на затворе до 3 вольт. Его мощность достигает 110 ватт.

Полевиком управляет микросхема TL 431. Стабилизатор имеет следующий принцип действия. При подсоединении трансформатора на вторичной обмотке возникает переменное напряжение 13 вольт, которое выпрямляется выпрямительным мостом. На выравнивающем конденсаторе значительной емкости появляется постоянное напряжение 16 вольт.

Это напряжение проходит на сток полевого транзистора и по сопротивлению R1 идет на затвор, при этом открывая транзистор. Часть напряжения на выходе через делитель попадает на микросхему, при этом замыкая цепь ООС. Напряжение прибора повышается до тех пор, пока входное напряжение микросхемы не дойдет границы 2,5 вольт. В это время микросхема открывается, уменьшая напряжение затвора полевика, то есть, немного закрывая его, и прибор работает в режиме стабилизации. Емкость С3 делает быстрее выход стабилизатора на номинальный режим.

Величина напряжения выхода устанавливается 2,5-30 вольт, путем выбора переменным сопротивлением R2, его величина может меняться в больших пределах. Емкости С1, С2, С4 дают возможность стабильному действию стабилизатора.

Для такого прибора наименьшее падение напряжения на транзисторе составляет до 3 вольт, хотя он способен работать при напряжении около нуля. Такой недостаток возникает поступлением напряжения на затвор. При малом падении напряжения полупроводник не будет открываться, так как на затворе должно быть плюсовое напряжение по отношению к истоку.

Для снижения падения напряжения цепь затвора рекомендуется подключать от отдельного выпрямителя на 5 вольт выше, чем напряжение выхода прибора.

Хорошие результаты можно получить при подключении диода VD 2 к мосту выпрямления. При этом напряжение на конденсаторе С5 повысится, так как падение напряжения на VD 2 станет ниже, чем на диодах выпрямителя. Для плавного регулирования напряжения выхода постоянное сопротивление R2 нужно заменить переменным резистором.

Величину выходного напряжения определяют по формуле: U вых = 2,5 (1+R2 / R3). Если применить транзистор IRF 840, то наименьшее значение напряжения управления на затворе станет 5 вольт. Емкости выбирают танталовые малогабаритные, сопротивления – МЛТ, С2, Р1. Выпрямительный диод с небольшим падением напряжения. Свойства трансформатора, моста выпрямления и емкости С1 подбирают по нужному напряжению выхода и тока.

Полевик рассчитан на значительные токи и мощность, для этого необходим хороший теплоотвод. Транзистор служит для монтажа на радиатор путем пайки с промежуточной пластиной из меди. К ней припаивают транзистор с остальными деталями. После монтажа пластину размещают на радиаторе. Для этого пайка не нужна, так как пластина имеет значительную площадь контакта с радиатором.

Если использовать для наружной установки микросхему П_431 С, сопротивления Р1, и чип-конденсаторы, то их располагают на печатной плате из текстолита. Плату паяют к транзистору. Настройка прибора сводится к монтажу нужного значения напряжения. Необходимо проконтролировать прибор и проверить его, имеется ли самовозбуждение на всех режимах.

JLCPCB — это крупнейшая фабрика PCB прототипов в Китае. Для более чем 600000 заказчиков по всему миру мы делаем свыше 15000 онлайн заказов на прототипы и малые партии печатных плат каждый день!

Anything in here will be replaced on browsers that support the canvas element

Мощный стабилизатор тока и напряжения на TL494

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат. Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант — это попытка создания простого и достаточно мощного стабилизатора.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт. Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

Устройство не боится коротких замыканий, просто сработает ограничение тока.

Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор, и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное — микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

Подробное описание и испытания блока можно посмотреть в видео